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Abstract

I study a fully dynamic rational expectations economy with asymmetric information, where agents

have finite investment horizons; T. Horizons affects asset prices through two key mechanisms: as T

increases, 1) the age-adjusted risk aversion of the average investor falls, and 2) the risk transfer from

forced liquidators into voluntary buyers drops. There are typically two equilibria: a stable equilibrium

in which higher T lowers price volatility, and an unstable one with the opposite properties. Moreover,

equilibria that fail to exist for low T can be recovered for high enough lifespan. Along the stable equi-

librium, increasing T lowers price volatility and alleviates the uncertainty of uninformed investors. The

low risk environment induces aggressive trading by the informed, which impound their knowledge into

prices. Expected returns and return volatility are similar to an economy with full-information about

fundamentals, even if the informed are relatively few. For short horizons, cautious trading disaggre-

gates information from prices and the economy approaches one with no private information. Consistent

with evidence of increased fund liquidations during episodes of financial distress, the results suggest

that heightened volatility and uncertainty can be explained by the shortening of investor horizons in a

rational economy with asymmetric information.
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1 Introduction

It has long been recognized that short investment horizons can be a destabilizing force in asset markets.

Vast research in the limits of arbitrage underscores how sophisticated traders investing other people’s

money have good reasons to be concerned about short term performance, perhaps even more so than

about long-run returns. While this view has come a long way in the past 20 years, much less understood

is the role played by short investment horizons during financial crises. In particular, what role does

short-term speculation have in jointly explaining the following stylized facts observed during episodes of

market turbulence: i) a tightening of funding constraints of financial intermediaries in the form of capital

outflows, and the consequent increase in fund liquidations; ii) sharp declines in asset prices and increases

in volatility and expected returns; and iii) spikes in market- and survey-based measures of economic

uncertainty? This paper contributes to filling this gap by providing a model where investors trade an

infinitely lived asset, but have (arbitrary) finite investment horizons, T . The model then studies how

variations in horizons affect asset returns in equilibrium. In other words, the exercise performed here

captures fact i) above –increased fund outflows during crises– by reducing the effective investing horizons

of traders, and studies how it relates to facts ii) and iii).

The model is based on the dynamic rational expectations equilibrium analysis pioneered by Wang

(1994). The economy is made up of a unit measure of competitive investors who trade an infinitely-

lived asset to maximize utility of lifetime consumption under CARA preferences. There are two types of

investors: those who observe private information about the persistent component of the dividend process

(informed investors), and those who must infer it from dividends and prices (uninformed investors).

Investors also differ in their age. At any point in time, there are T generations of investors coexisting.

T−1 groups of equal mass (aged 1, 2, ...T−1) are still active in the market and can take voluntary positions,

while the oldest generation (aged T ) is exiting the economy and must unwind its positions at prevailing

prices. The net supply of the asset is random and causes prices to fluctuate for reasons orthogonal to

fundamentals. This prevents prices from fully revealing the information observed by informed investors.

In general terms, the central finding of the paper is that investment horizons matter a great deal

for asset pricing and market efficiency. The generalized OLG economy developed here highlights two

key and novel mechanisms that account for this result. The first relates to the “pricing” of risk, which

I label the age-adjusted risk aversion effect. As investors live for more periods, they are willing to

absorb the liquidations of the dying generation at lower expected returns, since they can smooth their

consumption over a longer lifespan and are less exposed to temporary price deviations caused by the

random asset supply. The second mechanism relates to the “quantity” of risk that active investors must

bear in equilibrium, which I label the risk transfer effect. As investors live longer, the relative size of

the oldest generation (forced liquidators) shrinks in relation to the mass of active investors (voluntary

traders). Since both mechanisms work in the same direction, longer investment horizons lower the the

risk premium, and mitigate price volatility arising from random supply innovations. Moreover, since price

volatility is dominated by innovations in fundamentals for long horizons, prices are more informative for

investors who observe only public information. The market is then not only more stable, but also more

efficient in the informational sense as investment horizons increase.
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More specifically, the paper makes three contributions. The first is the characterization of existence,

multiplicity, and stability properties of linear equilibria in generalized OLG models. By building a par-

simonious environment able to encompass arbitrary investing horizons and heterogeneous information

structures, the model nests a wide variety of economies whose equilibrium properties have not been

addressed in prior work. In terms of existence, the results show that for any given set of parameters

describing preferences and stochastic processes, economies which fail to exhibit equilibria for low invest-

ment horizons will always have equilibria for large enough T . The reverse interpretation of this result is

that market equilibrium can break down as horizons shorten. Regarding multiplicity, a finite investment

horizon economy generically exhibits two equilibria (whenever equilibria exists), a result consistent with

the findings of Spiegel (1998) and Watanabe (2008) for 2-period OLG economies.1 These include a stable,

low volatility equilibrium where innovation in the asset supply have small price impact, and an unstable

equilibrium where they cause high volatility in returns. In this respect, the contribution of the present

paper is describing the evolution of pricing moments along these equilibria as a function of the investment

horizon. Along the stable, low volatility equilibrium, increases in T lower the price impact of asset supply

innovations, decreasing price volatility. As T →∞, the low volatility equilibrium converges smoothly to

the case studied by Wang (1994). Along the unstable equilibrium however, longer investment horizons

leads to unbounded increases in price volatility. In the limit, this second equilibrium vanishes as T →∞.

Intuitively, as investors live for more periods, both the increased willingness to take risks and the larger

proportion of voluntary trades with respect to forced liquidations makes the high volatility equilibrium

increasingly “difficult” to sustain.

As a second contribution, the paper shows that the asset pricing implications of different investment

horizons rely crucially on the two afore-mentioned mechanisms, both of which are –to the best of my

knowledge– new to the literature. To understand the first mechanism, the age-adjusted risk aversion

effect, consider a hypothetical economy where all investors are infinitely lived. In this economy, the

marginal propensity to consume out of wealth is the ratio between the net and gross interest rate, r/R.

This coefficient is precisely how agents price the uncertainty regarding wealth fluctuations –the “age-

adjusted” risk aversion parameter of all agents corresponds to γ · r/R, where γ is the CARA parameter.2

In the other extreme case in which agents live only 2 periods, the marginal propensity to consume wealth

is one, and the effective risk aversion equals γ. In the present model, the pricing of risk depends on the

age of the investor. Importantly, as horizons increase, the average age-adjusted risk aversion declines.

The economics behind the second mechanism –the risk transfer effect– are as follows. Consider once

again an economy with infinitely-lived agents. Because investors always trade voluntarily, there is no

forced transfer of risk between generations, and all agents bear the aggregate risk proportionally. In the

other extreme when agents live for two periods, the dying generation (in mass 1/2) must unload all its

positions into a single younger generation (also in mass 1/2). In other words, the whole aggregate risk of

the economy must exchange hands every period! The generalized OLG economy studied here essentially

spans the whole intermediate region of investment horizons left out by the extreme cases, and shows how

increases in T lead to a reduction in the relative transfer of risk from the dying to all other generations.

1Two equilibria arise in the single asset case, as studied here. In the N -risky asset case, there exists 2N equilibria.
2This is the economy considered by Wang (1994).
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The third contribution of the paper is the characterization of asset price informativeness and uncer-

tainty as a function of investors’ horizons. I study the behavior of asset prices along the stable equilibrium

for three generic economies: a full-information benchmark where all investors observe the persistent com-

ponent of dividends; a no-information economy in which all investors observe only the history of dividends

and prices; and the asymmetric-information economy where only a relatively small mass of investors has

access to persistent payoff information. A comparison between these economies reveals the following re-

sults: a) For long horizons, the intermediate economy behaves similarly to the full information benchmark.

The low risk environment implied by large T induces active trading of informed investors in response to

private information, which then gets impounded into prices. Uninformed investors extract precise infor-

mation from prices, which reduces the level of uncertainty of the average agent. In this economy, price

movements are largely driven by fundamental volatility, and expected returns and return volatility closely

mimic the full-information case. b) For short investment horizons, the asymmetric information economy

approaches the no-information benchmark. The high risk implied by small T leads informed investors to

trade more cautiously, disaggregating information from prices and increasing uncertainty about funda-

mental asset values for the uninformed. In this economy, price movements are largely driven by supply

innovations, and expected returns and return volatility line up closely with the no-information case.

The model presented here is most closely related to the literature studying trading in OLG environ-

ments. De Long et al. (1990), as well as Spiegel (1998), study economies with 2-period lived investors.

Spiegel (1998) is closest to the present paper as in his model all investors are rational, and the random

component of returns comes from (rather small) random innovations in the asset supply. Watanabe (2008)

extends Spiegel’s model to introduce asymmetric information about forthcoming dividends. In all these

models however, investor horizons are fixed. The discussion on how the economy can transition between

episodes of high and low price volatility therefore remains, by construction, relegated to an equilibrium

switching argument only. He and Wang (1995), and Cvitanić et al. (2006), study finite horizon economies

with incomplete information. Since agents derive utility only from terminal wealth, the age-adjusted risk

aversion coincides with the CARA parameter in both papers. Moreover, in these papers all investors grow

old simultaneously, so there is no risk transfer from dying to active generations. The two main forces at

work in the present paper are therefore quite different.

Other related papers study the impact of short-term investors in the context of 3-period models.

In Froot et al. (1992), investors might choose to study information unrelated to fundamentals to the

extent it can predict short-term price movements. Kondor (2012) studies an economy with short-term

traders, focusing on how public disclosures can simultaneously increase divergence of (rational) beliefs

about returns while lowering the conditional uncertainty about fundamentals. Cespa and Vives (2012)

focus on how persistent noise trading can generate two equilibria even in a finite horizon economy. Also,

in an earlier version of this paper, I study the impact of increased fund liquidations during downturns in

effectively lowering investors’ horizon, and its implications for price informativeness and expected returns

(Albagli, 2009). It is of course difficult to compare the results obtained in a fully dynamic model from

those derived from finite horizon environments. The key difference with these papers remains in that the

present analysis allows for varying investment horizons –indeed, such variation constitutes the baseline of
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the results discussed– whereas 3-period models have a rigid lifespan structure.3

Finally, the work by Chien et al. (2012) is also related. They build an economy where some investors

are intermittent portfolio re-balancers. When equity prices drop following bad shocks, this forces a

relatively small mass of sophisticated investors to bear aggregate risk disproportionally, inducing further

price declines and an increase in expected returns. The economy they consider has symmetric information,

infinitely lived agents and CRRA preferences, so the forces at work are quite different. Nevertheless, a

varying mass of investors who must absorb aggregate risk is a common theme in both papers, and so the

findings presented here are complementary to their work.

The rest of the paper is organized as follows. Section 2 lays out the model and describes the equilibrium

concept. Section 3 presents the characterization of existence, multiplicity, and stability, for economies with

symmetric information. Section 4 then focuses on how investment horizons affect the stable equilibrium

of the asymmetric information economy, discussing its implications for expected returns, price volatility

and uncertainty. Section 5 concludes. All proofs are contained in the appendix.

2 A Generalized OLG model with Asymmetric Information

2.1 Basic Setup

2.1.1 Securities and Payoffs

Time is discrete and runs to infinity. There is a risk-free asset in perfectly elastic supply yielding a gross

return of R = 1+r, and one risky asset paying an infinite stream of dividends {Dτ}∞τ=1. Dividends follows

a mean-reverting process with unconditional mean F̄ and persistence ρF (with 0 ≤ ρF ≤ 1):

Dt = Ft + εDt , with (1)

Ft = (1− ρF )F̄ + ρFFt−1 + εFt . (2)

Ft is the persistent payoff component. Due to the disturbances εDt and εFt however, the value of Ft is not

revealed by the observation of dividends.

The risky asset supply is given by θt, a mean-reverting stochastic process described by

θt = (1− ρθ)θ̄ + ρθθt−1 + εθt , (3)

where θ̄ ≥ 0 is its unconditional mean, ρθ denotes its persistence (with 0 ≤ ρθ ≤ 1), and εθt is a white

noise disturbance. The error vector εt ≡ [εDt εFt εθt ]
′

is serially uncorrelated, and follow a joint normal

distribution with mean zero, and variance-covariance matrix Σ = diag(σ2
D, σ

2
F , σ

2
θ).

3In Albagli (2009), changes in investing horizons are partly captured through comparative statics in the mass of investors
that are forced to liquidate due to households’ early withdrawals.
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2.1.2 Investors

The mass of investors in the economy is normalized to unity. A fraction µ of these, labeled uninformed

investors, have access to publicly available information only. Letting ht ≡ {ht−s}+∞s=0 denote the complete

history of a variable h up to time t, public information corresponds to the history of dividends and prices

of the risky asset represented by the filtration ΩU
t = {Dt, P t}. The complement share of investors (in mass

1− µ) are informed: in addition to public information ΩU
t , they observe the contemporaneous realization

of the persistent dividend component, Ft.

The population in the economy follows a generalized overlapping generation structure with a stationary

age distribution. That is, at time t, a mass 1/T of investors aged T is dying, which is replaced by an

equal mass of new-born investors who live for T periods. Hence, at any point in time the economy has

T different generations of investors coexisting, aged j = 1, 2, ...T years. The mix between informed and

uninformed investors is assumed to be the same in each generation, so that the economy displays a constant

age/information distribution. Investors maximize utility of lifetime consumption:
∑T

s=1 β
sU(Ct+s), where

period-utility is given by negative exponential preferences U(C) = −e−γ·C with equal CARA coefficient

across generations/investor types. All investors are born with exogenous wealth w0.

2.1.3 Asset Markets

Investors can take long or short positions in the risky asset at any time during their active trading years

j = {1, 2...T − 1}, for which they can borrow (or save) unlimited amounts in the risk-free asset. The

dying generation aged T , however, must liquidate accumulated positions as it may not leave the economy

with a net debt to any other investor. Denoting XU
j,t and XI

j,t the demand of uninformed and informed

investors aged j in period t, the aggregate demand for the asset is given by

AD : Xt ≡
1

T
(µ ·

T−1∑
j=1

XU
j,t + (1− µ) ·

T−1∑
j=1

XI
j,t). (4)

Investors are price-takers and submit price-contingent demand orders (generalized limit orders) to a

“Walrasian auctioneer”, who then sets a price Pt for the risky asset such that all orders are satisfied.

Defining the dollar net excess return of investment in the risky asset as Qt+1 ≡ Dt+1 + Pt+1 − RPt, the

wealth of investor aged j consuming Cij,t and demanding Xi
j,t (for i = {U, I}) evolves according to

W i
j+1,t+1 = (W i

j,t − Cij,t)R+Xi
j,tQt+1. (5)

2.2 Equilibrium Characterization

2.2.1 Recursive Representation

The key object to solve is the risky asset price, Pt. I conjecture (and later confirm) that the setup

described above leads to the following linear price equation:

Pt = p0 + p̂FF
U
t + pFFt + pθθt, (6)
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where FUt ≡ E[Ft|ΩU
t ] is defined as the uninformed investors’ forecast of the persistent dividend component

Ft, conditional on publicly available information. To characterize the equilibrium, it is useful to begin by

writing the evolution of the main state variables in a recursive form. Let Ψt+1 ≡ [1 Ft+1 θt+1]
′
. Given

equations (1), (2), and (3), the evolution of Ψt+1 can be written as

Ψt+1 = AψΨt +Bψε
U
t+1, (7)

where Aψ and Bψ are matrices of proper order, and the vector εUt+1 ≡ [εDt+1 εFt+1 εθt+1 F̃Ut ]
′

is the

expanded error vector faced by the uninformed investors, who in addition to the exogenous shocks face

uncertainty coming from their own forecast errors about Ft; F̃
U
t ≡ F̂Ut − Ft (see the Appendix). Most of

the equations of interest, including the evolution of beliefs, optimal demands, and prices, can be expressed

in terms of this recursive representation.

The solution approach builds on the standard techniques used in CARA-normal REE setups.4 These

models apply a guess-verify procedure which consists of 3 steps. First, conjecture that prices are linear in

the underlying shocks. Based on this conjecture, update beliefs of investors (posterior means and variance)

about future dividends and prices. Second, derive the optimal demands of investors. Third, impose market

clearing and solve for the conjectured price coefficients in terms of the underlying parameters.

More formally, for any filtration Ω, let H(x|Ω) : R → [0, 1] denote the conditional posterior cdf of

a random variable x. Let (j, i) denote the age/information type of each investor in the economy, with

j = {1, 2, ...T}, and i = {U, I}, and let the filtration ΩU
t = {Dt, P t} and ΩI

t = {Dt, P t, Ft} represent

the information available at time t to uninformed and informed investors, respectively.5 The equilibrium

concept is as follows:

A competitive rational expectations equilibrium is: 1. A price function given by (6), 2. A risky asset

demand Xi
j,t = x(Pt,Ω

i
t, j) by investor (j, i), 3. Posterior beliefs H(Ψt|ΩU

t ) and H(Ψt|ΩI
t ) for uninformed

and informed investors, respectively, such that ∀ (j, i): (i) Asset demands are optimal given prices and

posterior beliefs; (ii) The asset markets clear at all times; and (iii) Posterior beliefs satisfy Bayes law.

2.2.2 Traders’ Problem

For an investor aged j in period t, with information given by the filtration Ωi
t, the problem is given by

max
x,c

E[−
T−j∑
s=0

βse−γCj+s,t+s | Ωi
t], s.t. W i

j+1,t+1 = (W i
j,t − Cj,t)R+Xi

j,tQt+1, W i
1,t = w0. (8)

This optimization remains analytically tractable as long as the evolution of future wealth, conditional on

information, is normally distributed. The value function then takes a known form in terms of its depen-

dence on the first and second conditional moments of investors’ beliefs about the state variables driving

future returns. With this tractable value function representation, asset demands and consumption/savings

policies can be determined in closed form (see the discussion in Wang (1994) for more details).

4See Vives (2008) for a textbook discussion.
5Whether we allow informed investors to observe the complete history F t, or just the current value Ft, is irrelevant since

{θt, Ft} are sufficient statistics for predicting future returns.
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We now check whether future excess returns Qt+1 are indeed conditionally normally distributed. For

informed investors, this is immediate. Because the informed also observe the public information available

to the uninformed, they know the value of the current forecast FUt . Since they also observe Ft privately,

the price reveals the current realization of the aggregate supply, θt. It is then straightforward to show

that Qt+1 is conditionally gaussian for the informed investors.

For the uninformed, beliefs must be characterized with dynamic filtering methods. Note that from

the price equation in (6), uninformed investors can back out a noisy signal about Ft, after subtracting

the constant as well as the contribution of their own forecasts to the price. Let’s label this signal the

informational content of price, given by pt ≡ Ft + λ · θt, with λ ≡ pθ/pF . Together with the dividend in

equation (1), these signals constitute the vector of public information about the state vector Ψt. Using

the recursive characterization, the signal vector can be written as

St ≡ [Dt pt]
′

= AsΨt +Bsε
U
t . (9)

The next theorem describes the evolution of uninformed investors beliefs, showing that forecast errors

follow a normal distribution. Specifically, let O ≡ E[(Ψt − E[Ψt | ΩU
t ])(Ψt − E[Ψt | ΩU

t ])
′ | ΩU

t ] denote the

variance of the state vector, conditional on public information. Then,

Theorem 1 (Beliefs with public information): The distribution of the state vector Ψt, conditional

on the filtration ΩU
t = {Dt, P t}, is normal with mean E[Ψt | ΩU

t ] and variance O, where

E[Ψt | ΩU
t ] = AψE[Ψt−1 | ΩU

t−1] +K(St − E[St | ΩU
t−1]), (10)

and the conditional variance and projection matrix K jointly solve

O = (I3 −KAs)(AψOA
′
ψ +Bψ∆B

′
ψ), (11)

K = (AψOA
′
ψ +Bψ∆B

′
ψ)A

′
s(As(AψOA

′
ψ +Bψ∆B

′
ψ)A

′
s +Bs∆B

′
s)
−1, (12)

∆ = diag(σ2
D, σ

2
F , σ

2
φ,O(2, 2)).

Once we have checked that uninformed investors’ beliefs follow a conditional gaussian distribution,

we can state the results characterizing the value functions and the optimal consumption and investment

policies chosen by different types of investors.

Theorem 2 (consumption/investment policies): Let W I
j,t and WU

j,t denote wealth of a j-aged

informed and uninformed investor, respectively. Let Mt ≡ [1 Ft θt F̃
U
t ]
′

and MU
t ≡ [1 F̂Ut θ̂Ut ]

′
denote

the current projection of informed and uninformed investors about the expanded state vector, respectively.

Then,
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1. The value function and optimal rules of the informed investor correspond to

JI(W I
j,t;Mt; j; t) = −βte−αjW

I
j,t−V Ij (Mt), (13)

XI
j,t = (

AQ

αj+1ΓIj+1

−
hIj+1

αj+1ΓIj+1

) ·Mt, (14)

CIj,t = cIj+1 + (
αj+1R

αj+1R+ γ
)W I

j,t +
M
′
tm

I
j+1Mt

2(αj+1R+ γ)
. (15)

2. The value function and optimal rules of the uninformed investor correspond to

JU (WU
j,t;M

U
t ; j; t) = −βte−αjW

U
j,t−V Uj (MU

t ), (16)

XU
j,t = (

AUQ

αj+1ΓUj+1

−
hUj+1

αj+1ΓUj+1

) ·MU
t , (17)

CUj,t = cUj+1 + (
αj+1R

αj+1R+ γ
)WU

j,t +
MU ′
t mU

j+1M
U
t

2(αj+1R+ γ)
. (18)

Future returns, Qt+1, depend on the contemporaneous state variables Ft and θt, but also on the

uninformed investors’ projection about these variables. This can be conveniently reduced to a dependence

on the expanded state vector Mt ≡ [1 Ft θt F̃Ut ]
′
, which includes uninformed investors’ forecast error

about current state variables.6 While this vector is perfectly observed by the informed investors, it is

observed with noise by the uninformed investors. Conditional on their information however, their forecast

error is a zero-mean, normally distributed random variable. Hence, for both investor types future returns

are linear in these projections (Mt for the informed, MU
t for the uninformed), plus additional white noise

error with gaussian distribution. The problem then remains tractable and value functions and optimal

policies have the closed-form expression stated above.

Optimal portfolios take the form found in other dynamic CARA-gaussian models. Take the case for

informed investors. The term AQ/(αj+1ΓIj+1) is a mean-variance efficient portfolio capturing the tradeoff

between expected returns (numerator) and risk (denominator), where αj+1 is the age-dependent risk

aversion coefficient, and ΓIj+1 is the renormalized covariance matrix of returns. In simple terms, this ratio

reflects the response in investors demand coming from an increase in expected returns. The second term

is a hedging component arising from the fact that innovations in contemporaneous returns affect expected

returns further into the future. More precisely, the error innovation εt+1 not only affects returns Qt+1,

but also the value function at t+ 1, giving rise to an additional source of risk (see Wang (1994) for more

details). What makes this particular problem different from other dynamic REE environments is of course

the dependence of these components on the age of the investor.

The price equilibria conjectured in (6) is the solution of a fixed-point problem. Starting from an

initial price vector conjecture P , the equilibrium conditions deliver a new price vector P
′

= F (P ), where

the functional F (·) is implicitly defined by the agents optimization problem together with the market

clearing requirement. An equilibrium is then a fixed point P ∗ = F (P ∗). The solution method, barring

6This is because the forecast error of the uninformed about Ft is perfectly colinear with her forecast error about θt.
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some special cases commented below, relies on numerical procedures. Beginning with a known terminal

value function for the dying generation, one can iteratively compute the value functions at earlier ages

for each investor to find the optimal consumption and investment rules for all the different ages actively

interacting in the asset market. Equilibrium prices can then be solved by imposing the market clearing

condition:

1

T
(µ ·

T−1∑
j=1

XU
j,t + (1− µ) ·

T−1∑
j=1

XI
j,t) = θt. (19)

In the next two sections I analyze the properties of the equilibrium and discuss the implications of varying

investment horizons for particular classes of economies.

3 Symmetric Information Economies

This section characterizes the equilibrium and discusses the implications of varying the investment horizon

T , for economies with symmetric information. I study both the cases where the mass of uninformed agents

is µ = 1 (no-information economy) and µ = 0 (full information economy). Apart from being more tractable

and allowing for the derivation of some analytical results, these economies convey much of the intuition

about the mechanisms that are triggered from variations in investment horizons, and so provide a natural

starting point for the analysis.

3.1 Existence and multiplicity of equilibria

Table 1 introduces the baseline parameters that I will use throughout (unless otherwise stated). Although

the purpose of the paper is not to provide a detailed calibration exercise for fitting asset pricing data,

some features of the parameter choice are relevant to discuss. I have chosen the variance of the persistent

dividend process as a normalization (equal to one) and made it relatively persistent (ρF = 0.95). In

comparison, the temporary dividend component is relatively volatile (σD = 3).7 The average net supply

of the risky asset, θ̄, is normalized to one, in accordance to the measure of agents in the economy. Its

standard deviation σθ is set to 10% of its unconditional value.

Table 1: Baseline parameters

σ	
  D	
   σ	
  F	
   σ	
  θ ρ	
  F	
   ρ	
  θ γ	
   r β	
   F θ
3 1 0.1 0.95 0.6 1 0.05 	
  1/(1.05) 20 1

Figure 1 plots the relation between the volatility of prices Pt+1, given an information set which

conditions on public information {Dt, P t}, and the investment horizon, T . The right panel considers the

7Although the transitory dividend component volatility does not enter the price equation (6) directly, it makes inference
of the persistent dividend component Ft more difficult for the uninformed investors.
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no-information economy (µ = 1), while the left panel plots the full-information economy (µ = 0). The

first thing to note from the figure is that an equilibrium does not exist for all investment horizons. Under

the baseline parameters (solid lines), the full-information economy exhibits equilibria starting from the

critical horizon of T ∗ = 10 onwards, which coincides with the critical T ∗ for the no-information economy.

The fact that overlapping generations models for the stock market can fail to exhibit equilibria is discussed

by Spiegel (1998), Watanabe (2008), and Banerjee (2011). As the figure suggest, for the traditional OLG

setup in which T = 2, conditions for existence are indeed quite stringent and one must adjust some of the

key parameters related to risk. Spiegel (1998), for instance, assumes a very small volatility of the random

supply; σθ. The dotted lines show equilibria for σθ = 0.05, for which both economies reach the existence

region at lower values of T ∗.

Figure 1: Existence and multiplicity
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The second apparent feature of the equilibria is multiplicity. For each investment horizon equal or

larger than the minimum required for existence, there are generally 2 equilibria.8 Across these equilibria,

only the price coefficient associated with innovations in the persistent dividend component (p̂F for µ = 1,

and pF for µ = 0) remains the same. The rest of the parameters vary reflecting two self-fulfilling equilibria.

In one equilibrium, the price impact of the random supply is relatively small (pθ is small, in absolute value).

If investors trading in the current period believe this equilibrium will prevail in the future, they require a

modest compensation for taking on the other side of random supply innovations, which then have minor

effects on prices and returns. As a result of this low risk environment, the average price of the security is

high, reflected by a large coefficient p0. But the situation might well be the converse. If investors expect

8Although one could adjust parameters such that for the critical horizon T ∗ the two equilibria coincide.

10



future supply innovations to have large effect on future prices, they will become reluctant to absorb the

current (stochastic) supply of the stock, whose price will then respond to innovations in θ with a large,

negative coefficient. The high risk faced by investors is compensated through a large average premium (a

low, or even negative value of p0 in the price equation).

Although similar existence and multiplicity results have been discussed in 2-period OLG models,

little is known about how variations in investor horizons can affect the properties of the equilibria in a

generalized T -horizon economy. Figure 1 shows that, along the low volatility equilibrium, increasing the

lifespan of investors reduces price volatility. As mentioned earlier, this is due to two main mechanisms

at work: the age-adjusted risk aversion effect, and the risk transfer effect, which I will explain in more

detail momentarily. The high volatility equilibria, in contrast, exhibits the exact opposite features. As

investors live for longer horizons, price volatility increases along this equilibrium. Intuitively, as investors

live longer, it takes an increasingly volatile security to induce investors to demand the high levels of

compensation that are consistent with such volatility in equilibrium

There are additional features of the high volatility equilibrium that make it a less suitable candidate

for equilibrium selection. First, as noted by Spiegel (1998) and made apparent in Figure 1, price the

volatility along the low volatility equilibrium is decreasing in the variability of the supply shock (σθ),

while it is increasing along the high-volatility equilibrium (compare the solid vs. dashed lines in the

figure). Second, the extreme levels of asset price volatility for longer lifespans make it increasingly hard

to find positive average prices. Third, while the low-volatility equilibrium converges smoothly to the

infinite horizon economy, the high volatility equilibrium vanishes as T → ∞. Actually, it is possible to

show this result analytically for the symmetric information economies under particular parameter values

(see the Appendix for the proof).

Proposition 1 (infinite horizon limit): Let µ = 0, or µ = 1. As T →∞,

a. An equilibrium always exists.

b. The equilibrium is unique.

The result in proposition 1 is of theoretical interest on its own. To my knowledge, a formal proof of the

existence and uniqueness of equilibria in dynamic REE settings when T → ∞ has not been stated in

prior work. Wang (1994), for instance, states that an equilibrium price equation similar to expression

(6) can be solved for numerically. Whether this is the case for all possible parameters, or whether the

solution is unique, is left an open question. The economics behind this result –the survival of the low

volatility equilibrium only, in the limit– seem intuitive. When investors are infinitely lived, they can

always accommodate a highly volatile asset price by voluntarily buying when it is underpriced, and

selling when it is overpriced. Hence, the attractiveness of the highly volatile asset cannot remain a feature

of the equilibrium, as competitive agents will bid the price up when it is underpriced, and down when

it is overpriced. In equilibrium, only a moderate level of price volatility is sustainable. This volatility

corresponds to the limit of the stable equilibrium in the finite horizon economy.

Figure 2 gives a more general picture of the equilibrium existence regions. Starting from the benchmark

11



Figure 2: Existence regions
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parameters, each panel shows the critical investment horizon T ∗ that sustains equilibria, for both the full-

and no-information economy. Parameters that increase the volatility of the dividend process (higher

σD, σF , or an increase in the persistence ρF ) increase the fundamental risk of the security, and require

increasing critical horizons T ∗ for existence. Similarly, increases in non-fundamental risk related to the

random supply shock (higher σθ, or an increase in the persistence ρθ) also shift up the minimal required

horizon. Naturally, risk aversion γ also increases T ∗, while the converse is true for the risk-free rate,

since prices respond less to fundamental innovations when investors discount future flows at a higher rate.

Finally, although β matters for the consumption path chosen by investors, it has no effect in their trading

decisions (as trading choices are wealth-independent), and hence no impact on prices or the critical horizon

T ∗. Moreover, for all parameter values, the full-information information economy reaches an equilibrium

at a (weakly) lower value of T ∗ than the no-information economy, since in the former investors have less

uncertainty about the fundamental dividend process.

3.2 Stability

Another crucial feature that differs across the high and low volatility equilibria is stability. I will define

an equilibrium to be stable if, starting from a small perturbation of the price coefficient associated with

the supply shock, the resulting price coefficient after one iteration of the agents’ optimization problem

leads to a new price vector with a smaller deviation from the initial equilibrium. That is, from a small

perturbation p
′
θ 6= p∗θ, an equilibrium is stable if |p′′θ − p∗θ| < |p

′
θ − p∗θ|, and unstable if |p′′θ − p∗θ| > |p

′
θ − p∗θ|,

where p
′′
θ is the element of the price vector P

′′
associated with supply innovations, and P

′′
= F (P

′
).
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For the general case, stability can only be inferred from numerical simulations. As discussed in

more detail in the appendix, the low-volatility equilibrium is (numerically) stable according to the above

definition of stability, while the high-volatility equilibrium is unstable. A special case which lends easily

to an analytical derivation is the symmetric information economy in the standard OLG model with T = 2.

Proposition 2 (stability): Let µ = 0, or µ = 1. For T = 2,

a. The low-volatility equilibrium is stable.

b. The high-volatility equilibrium is unstable.

The result in Proposition 2 sheds light onto the fragile nature of the high-volatility equilibrium. Indeed, if

the initial price conjecture contains even a slight deviation from the equilibrium value, the “tatonnement”

process set in motion by the iteration P
′′

= F (P
′
) will set the economy further and further away from

the initial equilibrium. In the case where the perturbation is positive (i.e., p
′
θ > p∗θ), the economy will

converge to the stable, low volatility equilibrium. When negative, the economy diverges.

Given that stability is yet another appealing equilibrium characteristic that adds to the list of desirable

properties discussed above, I will focus the attention on the low-volatility equilibrium in the remainder

of paper.

3.3 Variations in investment horizons: two key mechanisms

I now analyze in more detail the two main mechanisms driving the relation between price volatility and

investment horizons, in the case of economies with symmetric information.

3.3.1 Age-adjusted risk aversion effect

The first mechanism is related to the changes in the pricing of risk induced by changes in T , which

I will refer to as the age-adjusted risk aversion effect. A key driver of the action in dynamic trading

environment is not the concern of investors about future dividends, but about future price changes. In

this sense, a 2-period OLG economy represents a rather extreme case in which investors buying the asset

face a single future trading round where terminal wealth is completely determined. When investors live

for more periods however, they are less affected by price fluctuations at a particular point in time since

they are not forced to unwind their portfolio at adverse prices –unless they have reached the terminal

date T . In the words of De long et al. (1990), this is akin to receiving “dividend insurance”: investors

who purchase assets with high fundamental value diminish their total risk exposure to non-fundamental

shocks, the more so the longer they live and consume dividends.

To understand this mechanism more formally, consider the optimal portfolio decisions of the informed

investors in the full-information economy by setting µ = 0 (an equivalent argument holds for other

information structures). The left panel of Figure 3 plots the age-adjusted risk aversion coefficient, αj+1,

for an investment horizon T = 30. Inspection from the numerical results reveal this is the key source

of variation in the denominator in the demand expression (14). As shown in the appendix, αj+1 can be
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Figure 3: Age-adjusted risk aversion effect
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α = γr/R*

solved recursively through the equation:

αj =
γαj+1R

αj+1R+ γ
(20)

The economics behind this expression can be understood as follows. Take the case of an investor aged

j = 30. This investor is now retiring and hence her value function is just determined by the utility of

terminal wealth. In other words, the value of α30 = γ. When this investor was aged j = 29 one period

ago, this is the value of α that applies for her portfolio decisions, just as in a static CARA investment

problem. At the other extreme, for a newly born investor aged j = 1, the current risk of her transaction

ΓIj+1 is not accounted one-for-one in terms of its utility (value-function) impact, since she still has many

periods to recover from fluctuations in returns. This does not mean trading is risk-less: changes in wealth

resulting form the risky portfolio choice will affect her wealth, current consumption and value function.

But as the consumption policy expression (15) shows, current consumption choices are only affected by

changes in current wealth through
∂CIj,t

∂W I
j,t

=
γαj+1R

αj+1R+ γ
= αj ,

which is precisely the age-adjusted risk aversion coefficient used to price risk in the demand equation (14).

As an illustrative reference for this mechanism, consider the extreme case of a hypothetical economy

in which investors live for infinite periods (as analyzed by Wang (1994)). In this case, the value of α

can be found as the stationary solution to (20), corresponding to α∗ = γr/R. As shown in Figure 3, the
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age-adjusted risk-aversion of a newly born investor in the finite horizon economy converges towards the

infinitely-lived investor (age-adjusted) risk aversion coefficient, α∗. For an investor with an intermediate

age, say j = 20, the situation is somewhat in between the static benchmark and the infinite horizon

economy. As investors get older, their willingness to take risk is diminished. Indeed, this differential

response of investors demands as age increases is plotted in the right panel of Figure 3, which shows

the elasticity of demands to innovations in supply. As investors age, they become more cautious in their

positions and absorb a decreasing proportion of the aggregate supply. If we now compare two economies

in which investors live for different periods, the longer lived economy will have, at any point in time,

traders which on average have more trading rounds left in them. As Figure 3 makes clear, the willingness

to take on risks by the average investor will be larger in such economy.

To my knowledge, this mechanism has not been studied formally in overlapping generations models of

the financial market. A related discussion appears in De long et al. (1990), who state that increasing the

age of the 2-period lived sophisticated investors in their model should lead to more risk-taking, and hence

a diminished price impact from the positions taken by the “noise traders”. This exercise is however not

formally carried out in that paper, nor in the successive models of trading in OLG environments, which

always consider 2-period lived agents.9

3.3.2 Risk transfer effect

The second mechanism is related to changes in the amount of risk that must be absorbed in equilibrium

by all active generations, induced by changes in T . I label this mechanism the risk transfer effect. In an

economy in which agents live for T periods, at each point in time there are T −1 generations of voluntary

investors, compared to a single generation of retirees. In consequence, the relative risk transfer between

these generations is the ratio 1/(T −1). This mechanism can be illustrated by a convenient decomposition

of the market-clearing condition in (19). Continuing with the full-information economy, this gives

1

T
(XI

1,t +XI
2,t + · · ·+XI

T−1,t) = XI
1,t−1 +XI

2,t−1 + · · ·+XI
T−1,t−1︸ ︷︷ ︸

θt−1

+ (1− ρθ)(θ̄ − θt−1) + εθt︸ ︷︷ ︸
∆θt

(21)

⇒ 1

T
(XI

1,t + ∆XI
2,t + · · ·+ ∆XI

T−1,t) = XT−1,t−1 + ∆θt

The demand in the left-hand side of (21) is composed of all current active investors. Of these, investors

aged 2, 3 · ··, T − 1 were also present in the previous period, and hence their net demands correspond to

∆XI
2,t = XI

2,t −XI
1,t−1 for the investor currently aged 2, ∆XI

3,t for the investor aged 3, and so on. For all

these investors, the change in net positions is voluntary. Only for the investor aged T − 1 in the previous

period the net demand is exogenously set at −XI
T−1,t−1. In equilibrium, the negative of this amount,

plus the supply innovation (1 − ρθ)(θ̄ − θt−1) + εθt , must be absorbed by changes in the net positions of

9Closer in this respect are the dynamic, finite horizon models developed by He and Wang (1995), and Cvitanić et al.
(2006). As time elapses, agents learn more about the fundamental value of the asset –which is a single terminal payoff.
However, since in both models agents derive utility only from consumption of terminal wealth, they price changes in current
wealth one-to-one (i.e., the marginal propensity to consume wealth changes is 1). Therefore, the age-adjusted risk aversion
coefficient coincides with the CARA parameter.
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all active investors. Hence, a relative risk transfer from a mass of 1/T retirees to a mass of (T − 1)/T

voluntary investors: a risk transfer ratio of 1/(T − 1). For illustrative purposes, the left panel of Figure

4 plots the risk-transfer ratio as a function of the investment horizon.

Figure 4: Risk transfer effect
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As the right panel of Figure 3 showed earlier, however, the dying vintage of investors who exit the

economy hold less than their “fair share” of the supply –which amounts to 1/T . As investors age, the

increase in the age-adjusted risk aversion leads to a progressive reduction in asset holdings, compared with

the positions of their younger counterparts. This is made explicit by the right panel of Figure 4, which

plots the (equilibrium) holdings of the risky asset supply of the exiting vintage, relative to the average

holding. When T = 70, the exiting generation constitutes a 1.4% of the active traders population (i.e.,

1/69), but holds only about 7% of share of risky assets held by the average investor. It follows that when

this vintage of investors exit the economy, they will increase the supply of the asset that must be held

by the other investors by only 1.4% · 7% ≈ 0.1%. This gradual reduction in the risky positions of a given

vintage suggests that the transfer of risk from the dying generation to all others is a smooth process. The

fact however remains that, at any point in time, all vintages who hold less than the average share of the

supply are transferring risk to those who hold more, an effect induced by the anticipation of each vintage

that they will in fact die in a finite number of periods. Hence, the risk transfer ratio 1/(T − 1) remains

as the relevant statistic to account for the importance of this effect.

These two mechanisms shed light on why the results of OLG models with T = 2 are so extreme and

specific. On the one hand, current participants in the market must purchase an asset which they must
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completely unwind in a single future trading round (the age-adjusted risk aversion effect). But moreover,

when they do liquidate in the next period, their entire positions must be purchased by a generation with

equal mass as them (the risk transfer effect). Simply put, the whole aggregate risk of the economy must

forcefully exchange hands every period!

To gauge the relative importance of these two mechanisms, I now perform a decomposition of the

change in price volatility through the following exercise. I fix the mass of active (voluntary) investors in

the market to one (which corresponds to the infinite horizon economy). I then vary the investment horizon

T , letting only the average demands of investors change as a result of the age-adjusted risk aversion effect–

hence, shutting off the risk transfer mechanism. Figure 5 shows the volatility of prices (conditional on

Figure 5: Relative contributions of the effects
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public information) that emerges in these economies. As before, I include both the baseline parameters

and a case with lower volatility of the random supply, σθ = 0.05. As the figure makes clear, both effects

are important in delivering the change in price volatility due to changing investment horizons. For the

baseline parameters (black lines), the contribution of the risk transfer effect is about 33% of the total price

volatility increase produced by shrinking T from 70 to 10, in the case of the full-information economy. For

the no-information economy, the contribution of the risk transfer effect reaches 39% over the same range.

For economies that admit equilibria at lower investment horizons –which is the case when σθ = 0.05 (gray

lines)– the importance of the risk transfer effect grows larger, since changes in the relative risk transfer

ratio, 1/(T − 1), become more significant as T approaches the origin. For the full- and no-information

economy, the risk transfer effect account for 66% and 42% of total price volatility changes, respectively.
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4 Asymmetric Information Economies

This section analyzes the effects of changes in investment horizons for the more general asymmetric

information economy. The endogenous price signal pt ≡ Ft + λ · θt derived in section 2 will be relatively

more informative about the persistent dividend component when the ratio λ ≡ pθ/pF is small (in absolute

magnitude). But from the discussion in section 3, we learned that as horizons shrink, volatility increases

due to the heightened price response to supply innovations. It follows that in the asymmetric information

economy, the informational role of markets will be diminished as the lifespan of investors is reduced. This

section describes how pricing moments and market efficiency in the asymmetric information economy

behave as a function of T , contrasting them with the symmetric information benchmarks of section 3.

4.1 Asset pricing moments

The left hand side of Figure 6 plots the unconditional average of prices for three different economies: the

full information economy (circled line), the no-information benchmark (crossed line), and the asymmetric

information case when 20% of investors are informed (plain line). The ordering of mean prices across these

economies follow a one-to-one ordering with the amount of fundamental information available to agents:

prices are the highest for the full-information economy, intermediate for the asymmetric information

economy, and the lowest for the no-information case.

Figure 6: Average prices and volatility
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Interestingly, the right panel of the figure reveals that price volatility (the standard deviation of future

prices, conditional on current public information) might not follow the same ordering. In particular, the

no-information economy displays the least amount of price volatility, whereas the asymmetric-information

economy is the most volatile. The reason behind this result is intuitive. For the no-information economy,
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prices convey less information about fundamentals and hence vary less to reflect changes in the underlying

persistent dividend component. As the investment horizon shrinks, volatility spikes but mostly reflecting

an increased role of supply shocks. In the full-information economy, volatility is larger for all investment

horizons due to the high impact that fundamentals have on prices when they can be observed without

noise. Once again, as horizons grow short, the increased importance of supply shocks raise price volatility.

The asymmetric information economy, on the other hand, inherits the behavior of the two benchmark

economies to a different degree depending on the investment horizon under consideration. For relatively

long investment horizons, volatility is higher than in the no-information economy since prices respond

more to changes in fundamentals. For the parameters chosen, it is also above the volatility displayed by

the full-information economy, as prices react more to innovations in supply when fundamental uncertainty

is larger. Moreover, as T decreases, the volatility of prices in the asymmetric information case increases

with a sensitivity similar to that of the no-information economy, reflecting the increased uncertainty of

uninformed investors and the increased reaction of prices to non-fundamental innovations.

Figure 7: Risk premium and return volatility
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Figure 7 plots the expected return (risk premium) and the volatility of returns across the different

economies.10 The following patterns emerge in this figure which are independent of the parameters chosen.

First, both expected returns and return volatility are the lowest for the full information economy. Indeed,

although prices are relatively volatile in this economy, prices are also the highest, so the volatility of returns

is diminished. Regarding the risk premium, it is intuitive that since investors have the most information

about fundamentals in this case, their willingness to participate in the market is the highest, which is

reflected by lower required returns. Second, the risk premium and return volatility is the highest for the

10Since prices can be negative or arbitrarily close to zero in linear price models, I define the expected return as the ratio
between the expected dollar return conditional on public information, E[Qt+1|Ωut ], and the unconditional mean price, E[Pt].
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no-information economy, since agents face the largest amount of uncertainty regarding the fundamental

value of the asset. Third, the asymmetric information economy lies strictly in between the symmetric

information benchmarks. I will now explain in more detail the economic forces behind this last key result.

4.2 Market efficiency

Figure 8 plots the decomposition of price volatility (left panel) and the resulting uncertainty of the

uninformed investors (right panel), as a function of investment horizons. The share of price fluctuations

due to fundamentals is calculated as the fraction of the price variance explained by innovations in Ft, while

the non-fundamental share includes the fraction of price variance coming from both supply shocks, and

the forecast errors incurred by the uninformed investors (both shares sum to one). Clearly, fundamental

volatility dominates for relatively large values of the investment horizon, while the converse is true for

short lifespans. In consequence, the informational content of prices is diminished as investment horizons

shorten, and the uncertainty of the uninformed investors increases. As the right panel of the figure shows,

the uncertainty of the uninformed (the standard deviation of Ft, conditional on the history of public

information) nearly doubles as horizons fall from T = 70 to T = 20.

Figure 8: Variance decomposition and uncertainty
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Indeed, this figure provides the central intuition for the behavior of investors’ required returns in

the asymmetric information economy plotted in Figure 7. In particular, for long investment horizons,

the risk premium under asymmetric information comes very close to the returns required in the full-

information economy, whereas the no-information economy stands out with a larger compensation for

risk. However, as horizons shorten, the asymmetric information economy approaches the no-information

economy, both demanding significantly higher compensation for purchasing the security than the full-
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information economy.

What explains the apparent switching of the asymmetric information economy between these different

benchmark regimes? Precisely the endogenous nature of information in rational expectations environ-

ments. In a competitive risk-averse framework, the central force determining how aggressively informed

investors react to their private knowledge is risk. For long investment horizons, both the age-adjusted risk

aversion and the risk transfer effect lead to investor demands which are relatively elastic to expected re-

turns. In consequence, the market is deep and supply innovations have modest price impacts. In response

to this low risk environment, competitive CARA-investors who posses superior knowledge will trade on

this information aggressively, and information that is originally received privately by, say, 20% of the

trader population will mostly find its way into the price. Conversely, for short investment horizons, the

aforementioned effects incite cautious trading and demands become relatively inelastic to private infor-

mation about future returns. In consequence, information that is private to a group of investors remains

private to such group. This explains why asset prices in the asymmetric information economy approach

the behavior exhibited by the full-information economy for long horizons, since in this case the economy

resembles one which a large group of investors are, in effect, pretty well informed in equilibrium. On the

contrary, shrinking investment horizons set in motion a process of information disaggregation from prices,

and the knowledge of the population becomes in effect much closer to the no-information benchmark

–with asset pricing moments following suit.

The above fact can also be explained in terms of the excess sensitivity of the risk premium to changes in

T in the asymmetric information economy, relative to the symmetric knowledge benchmarks. This excess

sensitivity is explained by the interdependence between the uninformed investors’ level of uncertainty and

the risk faced by the informed. To understand this link, let’s describe in more detail the consequences

of a reduction in the demand elasticity of informed investors to private information. If these agents

respond less to information, the equilibrium price reveals less information about the fundamental Ft, and

uncertainty about fundamentals is higher for the uninformed. In response, the willingness to make the

market is reduced for these agents, which require a larger compensation for bearing a larger amount of

risk. In consequence, supply innovations are met with wider price fluctuations. The increased volatility

of prices, in turn, increases the risk for the informed, inducing them to react even less strongly to private

information. This last observations closes the interdependence, or “spiral”, between the risk faced by the

informed investors, and uncertainty of the uninformed.

However, one should note that there are limits to the strength of this spiral effect. Indeed, the uncer-

tainty of the uninformed in the asymmetric information economy is capped above by the knowledge of

investors in the no-information benchmark, which do learn about the persistent component Ft form the

observation of dividends. More interestingly, when horizons shrink and the uncertainty of the fundamen-

tal process grows larger, at the same time the price is becoming relatively more informative about the

noisy supply. Since this second source of price variation takes the center stage for relatively short hori-

zons (Figure 8, left panel), knowing relatively more about this second component becomes increasingly

important. In effect, the feedback loop between price volatility and investor uncertainty grows weaker
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due to this counteracting force.11

I conclude this section with some remarks on quantitative issues. First and foremost, CARA-normal

models are obviously not designed to capture realistic variations in asset pricing moments as the more

traditional theoretical asset pricing literature. This paper is no exception, and the central results should

be interpreted as an illustration of the qualitative mechanisms that are triggered by changes in effective

investment horizons. That said, the proposed mechanism of varying horizons does seem to play an

important role, at least within the confines of the model.

One could, of course, be suspicious about how big changes in investment horizons need to be for pricing

moments to show interesting variations. Is a reduction from 70 to 20 periods (say, years) a reasonable

proxy for what happens at the business cycle frequency? In this respect, note that the inverse of the

investment horizon corresponds exactly to the fraction of investors which are liquidating forcefully at

any given time (the mass of the dying generation). In this light, an increase in liquidations from 1.42%

(i.e., 1/70) to 5% (i.e., 1/20) does not seem exaggerated if one considers the empirical findings of fund

liquidations during periods of financial distress. For instance, Ben-David et al. (2012) find that hedge

funds reduced their exposure in equity markets in almost 30% during the 2008:Q3-Q4 contraction, which

corresponded roughly to 1% of all outstanding equities. Importantly, their results indicate that most of

this selling was actually forced by investors withdrawing financing. Carhart et al. (2002) study attrition

rates in the mutual fund industry, and find that while 3.6% of funds disappear yearly on average over

their sample, the standard deviation is quite high, at 2.4%. Chen et al. (2008) measure distress selling of

troubled –but still alive– mutual funds, and report average distress-driven sales between 0.6-1% of mutual

funds holdings at quarterly frequency (when using the asset-weighted measure of outflows). Moreover,

this fraction spikes considerably (nearly doubles) during the mayor episode of financial turbulence covered

in their sample: the demise of LTCM in 1998. Taken together, variations in forced liquidations between

1% and 5% per year seem to be in the ball park of the magnitudes reported in these studies for variation

at the business cycle frequency.

The second observation relates more generally to the quantitative implications of endogenous infor-

mation aggregation in explaining asset pricing moments. As Figure 7 shows, although the asymmetric

information economy reacts much more to changes in investment horizons than the full-information econ-

omy, one could argue that the no-information economy does a reasonable job in delivering comparable

variations in risk premium and return volatility. What is then the value added of a (more complex) model

that highlights asymmetric information?

The answer is that symmetric information benchmarks have no implications for market efficiency.

For the no-information economy, prices contain no additional information about the persistent dividend

process –over and above from what can be learned from dividends. In the full-information economy,

on the other hand, the price system is irrelevant as a source of information since agents already know

the value of fundamentals. It is in this respect that the analysis of asymmetric information in financial

markets becomes crucial. On one hand, it stresses that while return volatility will be high when horizons

shorten, it is the non-fundamental part of volatility that takes the center stage during these episodes,

11For a more detailed description of this counteracting mechanism, see the discussion in Avdis (2011).
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and that this matters for the allocative role of financial markets only to the extent that prices convey

valuable information to investors. On the other, it gives a plausible explanation for why most measures

of economic uncertainty often used in empirical work tend to spike during contractions and episodes of

financial distress.

5 Conclusions

This paper analyzed the asset pricing implications of finite investment horizons in financial markets. The

main message is twofold. First, horizons matter for both the pricing of risk of the average investor (the

age-adjusted risk aversion effect) and the amount of risk that must be held in equilibrium by the active

investors in a generalized OLG economy (the risk transfer effect). Both mechanism have the potential of

delivering interesting variations in expected returns and return volatilities when we interpret periods of

fund withdrawals as an effective shortening of investors’ horizons.

Second, investment horizons matter for market efficiency. While long horizons incite informed investors

to release their private information into prices through the trading process, the high risk environment

triggered by short investment horizons can significantly reduce asset price informativeness. In particular,

even if the fraction of informed investors is relatively low, the degree of information contained in prices can

show ample variations across different horizon regimes. Economies where effective investment horizons

are long behave similarly to a hypothetical case in which all investors observe economic fundamentals in

real time, while they align much closer with a no-information benchmark when horizons are short. This

findings suggests information disaggregation from the price process can be an important mechanism for

understanding variations in economic uncertainty more specifically, and market efficiency more generally.

There are several avenues in which one can extend and complement the current analysis. First,

although the focus of the paper is studying the asset pricing effects of varying investment horizons, the

analysis is limited to the comparison between steady states of different economies, rather than actual time

variation in horizons within the same economy. While a very interesting question to study, this type of

analysis is difficult to handle within rational expectations models as equilibrium prices lose their linear

form. This makes the standard solution methods inapplicable and the analysis becomes intractable.

A related extension which can, in principle, be analyzed under the current framework is the effects

of deterministic changes in population demographics. The analysis suggests that a generation of “baby

boomers” entering the economy could lead to higher asset prices and reduced uncertainty early in their life,

but to declining prices, heightened volatility and poor informational efficiency as the generation approaches

old age. Although the equilibrium in this economy would exhibit time-dependent price coefficients, the

analysis remains tractable as long as these demographic changes are perfectly anticipated.

Finally, one could also study the incentives to acquire information for different investment horizons.

While investors have more incentives to become informed when prices are less reliable, these are also the

times when the lifespan over which they plan to use such information is shorter. This leads to non-trivial

predictions about the effects of investment horizons on endogenous information acquisition. I leave these

important questions for future research.
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6 Appendix

Proof of Theorems 1 and 2:

To characterize beliefs, optimal consumption and investment rules, and equilibrium prices, one must first

find the matrices Aψ and Bψ in expression (7). From equations (1), (2), and (3), the evolution of Ψt+1 is

given by (7) as long as

Aψ =

 1 0 0

F0 ρF 0

θ0 0 ρθ

 , and Bψ =

 0 0 0 0

0 1 0 0

0 0 1 0

 .
where F0 ≡ (1− ρF )F̄ , and θ0 ≡ (1− ρθ)θ̄. I will prove Theorem’s 1 and 2 through the following 4 steps.

1) For given coefficients in the price equation, solve the Bayesian filtering problem of the uninformed,

and find the autoregressive process of their forecast errors. 2) Find the recursive representation of the

conditional state vectors Mt and MU
t , and the conditional distributions of future excess returns, Qt+1.

3) Solve optimal demands, and impose market clearing to find equilibrium prices. The resulting price

function is then found by equating the market clearing price to the initial price conjecture.

Step 1: Together with the coefficients in the price equation (6), the recursive representation in (7) leads

directly to the results in Theorem 1, which is just the Bayesian updating of beliefs described by the

Kalman filter. A derivation of the Kalman filter can be found in most advanced statistics textbooks.12

Writing E[Ψt | ΩU
t ] ≡ ΨU

t and ΨU
t −Ψt ≡ Ψ̃U

t for notational convenience, the evolution of the uninformed

investors’ forecast error vector can be found from manipulation of (10):

Ψ̃U
t+1 = AU · Ψ̃U

t +BU · εUt+1, with

AU ≡ (I3 −KAs)AΨ, and BU ≡ (K(AsBΨ +Bs)−BΨ).

But notice that the observation of the price implies forecast errors about Ft and θt are perfectly colinear

for the uninformed; i.e, Ft + λ · θt = FUt + λ · θUt , or θ̃Ut = −λ−1 · F̃Ut . This allows to rewrite the vector

Ψ̃U
t+1 as Ψ̃U

t+1 = [0 F̃Ut+1 θ̃Ut+1]
′

= AU · [0 F̃Ut θ̃Ut ]
′
+BU · εUt+1, or

F̃Ut+1 = ρU · F̃Ut + bU · εUt+1, (22)

with ρU ≡ AU (2, 2)− λ−1AU (2, 3), and bU ≡ BU (2, :).

12See Ljungqvist and Sargent (2000) for applications in macroeconomics.
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Step 2: Using (22), the evolution of the conditional state vectors Mt and MU
t can now be found:

Mt+1 = AM ·Mt +BM · εt+1, (23)

MU
t+1 = AUM ·MU

t +BU
M · εUt+1, (24)

with AM =


1 0 0 0

(1− ρF )F̄ ρF 0 0

(1− ρθ)θ̄ 0 ρθ 0

0 0 0 ρU

 , BM =


0 0 0

0 1 0

0 0 1

BU (2, 1) BU (2, 2) BU (2, 3)

 ,
AUM = AΨ, BU

M = K(AsAΨl0v0 +AsBΨ +Bs), l0 ≡ [0 − 1 − λ−1]
′
, and v0 ≡ [0 0 0 1].

Expressions (23) and (24) can now be used to express the conditional moments of future returns for

informed and uninformed investors. Note that the forecast FUt by in the price equation (6) can replaced

to express prices as a function of current state variables and the forecast error of the uninformed,

Pt = p0 + p1 · Ft + p2 · θt + p3 · F̃Ut ≡ P ·Mt, (25)

where p1 = p̂F + pF , p2 = pθ, p3 = p̂F , and P ≡ [p0 p1 p2 p3]. Moreover, writing the dividend in (1)

as Dt+1 = AD ·Ψt+1 + BD · εt+1, with AD ≡ [0 1 0], BD ≡ [1 0 0], the future return Qt+1 can now be

written as:

Qt+1 = AQ ·Mt +BQ · εt+1, (26)

with AQ ≡ ADAM + P · (AM − I4R), and BQ ≡ (AD + P ) ·BM +BD.

For uninformed investors, the corresponding expression in terms of their conditional expectations and

forecast errors is:

Qt+1 = AUQ ·MU
t +BU

Q · εUt+1, (27)

with AUQ ≡ AQm0, BU
Q ≡ AQm1v0 +BQm

′
0, m0 ≡

 1 0 0 0

0 1 0 0

0 0 1 0


′

, and m1 ≡ [0 − 1 λ−1 1]
′

Expression (26) and (27) confirm that future returns indeed follow a conditional gaussian distribution for

both informed and uninformed investors.

Step 3: Optimal investment and consumption policies can now be found by applying a known result on

value functions in gaussian-exponential environments (see Vives, 2008). In particular, the conjectured

value function at t+ 1 for an informed investor aged j at time t takes the form

JI(W I
j+1,t+1;Mt+1; j + 1; t+ 1) = −βt+1 · exp{−αj+1W

I
j+1,t −

1

2
M
′
t+1V

I
j+1Mt+1}.
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The value function at t then takes the form

JI(W I
j,t;Mt; j; t) = max

{X,C}
− exp{−γC} − βδIj+1exp{−αj+1R(W I

j,t + C)− αj+1XAQMt (28)

−1

2
M
′
tv
I,aa
j+1Mt +

1

2
(αj+1XBQ +M

′
tv
I,ab
j+1Mt)(Ξ

I
j+1)−1(αj+1XBQ +M

′
tv
I,ab
j+1Mt)

′
)}, with

vI,aaj+1 ≡ A
′
MV

I
j+1AM ; vI,bbj+1 ≡ B

′
MV

I
j+1BM ; vI,abj+1 ≡ A

′
MV

I
j+1BM ; (29)

ΞIj+1 ≡ Σ−1 + vI,bbj+1, and δIj+1 ≡ |Σ · ΞIj+1|−1/2.

The optimal consumption/investment policies can now be found through differentiation. Letting ΓIj+1 ≡
BQ(ΞIj+1)−1B

′
Q, we get

XI
j,t =

AQ − hIj+1

αj+1ΓIj+1

·Mt, (30)

CIj,t = cIj+1 + (
αj+1R

αj+1R+ γ
) ·W I

j,t +
M
′
tm

I
j+1Mt

2(αj+1R+ γ)
, where (31)

cIj+1 ≡ log(γ/(βδIj+1αj+1R))/(αj+1R+ γ); hIj+1 ≡ BQ(ΞIj+1)−1vI,ab
′

j+1 , and (32)

mI
j+1 ≡ g

′
j+1(ΓIj+1)−1gj+1 + vI,aaj+1 − v

I,ab
j+1(ΞIj+1)−1vI,ab

′

j+1 .

The matrices V I
j+1 and scalars αj , for j = 1, 2...T , can be solved recursively by setting αT = γ, V I

T = 04,

and using the recursive equations found in the f.o.c.s:

αj =
γαj+1R

αj+1R+ γ
, and V I

j = mI
t+1 · (

αj
αj+1R

) + 2 · i1,1 · (γcIj+1 + log
αj
γ

). (33)

where i1,1 is a 4x4 matrix with all element equal to zero except for the first, which equals one. For the

uninformed investors the procedure is similar, but one must replace Mt, AQ, BQ, and Σ, for MU
t , AUQ,

BU
Q , and ∆, respectively. This allows solving investment and consumption policies using the appropriate

superscript U instead of I.

We can now impose the market clearing condition (19). Note that although the conditional state

vector has different dimensions for the informed and uninformed investors, the uninformed forecasts can

be replaced by the actual values of the state variables plus the forecast noise. This leads to the following

equation that must be satisfied by the price:

P = Y · Z−1, where (34)

Z ≡ [(AM − I4R) · ((m0w̄
U
0 −m1v0w̄

U
1 ) · (m′0 + x0) + I4w̄

I
0)−BM ((m

′
0w̄

U
1 · (m

′
0 + x0) + I4w̄

I
1)],
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Y ≡ [Aθ − (ADAMm0w̄
U
0 − (ADAMm1v0 + (ADBM +BD)m

′
0)w̄U1 ) · (m′0 + x0)

−ADAM w̄I0 + (ADBM +BD)w̄I1], w̄U0 ≡
1

T

T∑
s=2

(αsΓ
U
s )−1, w̄I0 ≡

1

T

T∑
s=2

(αsΓ
I
s)
−1,

w̄U1 ≡ 1

T

T∑
s=2

(ΞUs )−1vU,ab
′

s (αsΓ
U
s )−1, w̄I1 ≡

1

T

T∑
s=2

(ΞIs)
−1vI,ab

′
s (αsΓ

I
s)
−1,

Aθ ≡ [θ̄ 0 1 0], and x0 ≡ [0 1 − λ−1]
′ · v0.

Equation (34) is the fixed point problem that determines the equilibrium price vector (whenever an

equilibrium exists). To see this, notice that both the (1x4) matrix Y and the (4x4) matrix Z depend on

an initial conjecture of the price vector P0 through their dependence on AM , BM , AQ, BQ, AUM , BU
M ,

AUQ, and BU
Q , all function of P0. The fixed point in (34) that defines the solution can then be written

as P ∗ = Y (P ∗)Z(P ∗)−1 = F (P ∗), where the functional F (·) is implicitly defined by the f.o.c’s in the

dynamic optimization of investors together with the market clearing requirement.

Proof of Proposition 1:

This proof consists of three steps. 1) Derive the price equation that arises from the market clearing

condition. This leads to a quadratic equation for the random supply coefficient pθ in the price equation

(6). I will show here that both roots of the equation depend on a particular coefficient of the value

function matrix V (the stationary value function matrix in the infinite horizon case). This coefficient is

the ninth element of the matrix, associated with the utility (value function) impact of random supply

innovations, which I label Vθ. 2) Derive a second equation which describes the element Vθ as a function

of the price coefficient pθ. An equilibrium is then a pair {pθ, Vθ} satisfying both equations. 3) show that

a) an intersection between these functions always exists (part a) of the proposition), and b) it is unique

(part b) of the proposition). Since the problem of investors in the no-information economy can always be

represented as an equivalent full-information economy with scaled up noise, and the proof is valid for all

possible parameter values, I will prove here the proposition for the full-information economy only.

Step 1: In the infinite horizon case with symmetric (full) information, there exists only one type of investor

whose asset demand (equation (30)) can be restated (dropping the age and information subscripts) as:

Xt =
AQ −BQΞ−1vab

′

αΓ
Ψt,

where AQ = [−p0r + pFF0 + pθθ0 + F0 pF (ρF − R) + ρF pθ(ρθ − R)] and BQ = [1 (1 + pF ) pθ]

are the row vectors associated with the loadings of future returns on the vector of contemporary state

variables, and future disturbances, respectively. It is straightforward to show that for this economy,

29



Ξ =

 σ−2
D 0 0

0 σ−2
F 0

0 0 σ−2
θ + Vθ,

 , Γ = σ2
D + (1 + pF )2σ2

F + p2
θ

1

σ−2
θ + Vθ

, and α =
γr

R
.

Moreover, from equation (29), it can be shown that the second term in the demand’s numerator corre-

sponds to BQΞ−1vab
′

= [pθ
V1,3+Vθθ0
σ−2
θ +Vθ

0 pθ
ρθVθ

σ−2
θ +Vθ

], where V1,3 is the 3rd (and 7th) term of the

(symmetric) matrix V . The market clearing condition then reads

[−p0r + pFF0 + pθ(θ0
σ−2
θ

σ−2
θ +Vθ

− V1,3
σ−2
θ +Vθ

) + F0 pF (ρF −R) + ρF pθ(ρθ
σ−2
θ

σ−2
θ +Vθ

−R)]

γ(r/R)(σ2
D + (1 + pF )2σ2

F + p2
θ

1
σ−2
θ +Vθ

)
= [0 0 1],

which gives rise to three equations determining the price coefficients p0, pF and pθ:

0 = −p0r + pFF0 + pθ(θ0
σ−2
θ

σ−2
θ + Vθ

− V1,3

σ−2
θ + Vθ

) + F0 (35)

0 = pF (ρF −R) + ρF (36)

pθ(ρθ
σ−2
θ

σ−2
θ + Vθ

−R) = p2
θ

γ(r/R)

σ−2
θ + Vθ

+ γ(r/R)(σ2
D + (

R

R− ρF
)2σ2

F ). (37)

Expression (37) is the first equation we will use to find the equilibrium pair {pθ, Vθ}. Defining k ≡
(2γ/R)(r/R)2(σ2

D + ( R
R−ρF )2σ2

F )1/2, and σ−2 ≡ σ−2
θ

R−ρθ
R , we can rewrite the two roots of (37) as

p+
θ,1(Vθ) = −R

2(σ−2 + Vθ)

2γr
+
R2(σ−2 + Vθ)

2γr

√
1− k2

σ−2
θ + Vθ

(σ−2 + Vθ)2
, (38)

p−θ,1(Vθ) = −R
2(σ−2 + Vθ)

2γr
− R2(σ−2 + Vθ)

2γr

√
1− k2

σ−2
θ + Vθ

(σ−2 + Vθ)2
. (39)

Step 2: to find the dependence of the value function term Vθ on the model parameters and the price

coefficient pθ, we adapt equation (33) to the infinite horizon case to write

V =
m

R
+ 2 · i1,1 · (γc+ log

α

γ
),
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but since i1,1 is zero for all terms besides the first, the expression for the ninth term in V reduces to

Vθ =
m(3, 3)

R
= pθ(ρθ

σ−2
θ

σ−2
θ − Vθ

−R)
rγ

R2
+ Vθρ

2
θ

σ−2
θ

σ−2
θ − Vθ

, or

pθ,2(Vθ) = −Vθ
R

γr
(1 +

ρθ(1− ρθ)σ−2
θ /R

σ−2 + Vθ
) (40)

Step 3: I now study equations (37) and (40). Figure 9 provides the loci of these equations in the {Vθ, pθ}
space. To find existence, it suffices to show that over the range of values of Vθ for which (37) has a real

solution, it intersects either of the two roots of equation (40) at least once. Uniqueness then amounts to

showing that this intersection is a singleton. I will prove existence and uniqueness by establishing the

following facts:

i) ∂p+
θ,1(·)/∂Vθ > 0;

ii) ∂p−θ,1(·)/∂Vθ < 0, ∂2p−θ,1(·)/∂V 2
θ > 0, and lim

Vθ→∞
∂p−θ,1(·)/∂Vθ = −R2

γr ,

iii) ∂pθ,2(·)/∂Vθ < 0, ∂2pθ,2(·)/∂V 2
θ > 0, and lim

Vθ→∞
∂pθ,2(·)/∂Vθ = −R

γr , and

iv) At V ∗θ , |∂p−θ,1(V ∗θ )/∂Vθ| > |∂pθ,2(V ∗θ )/∂Vθ|, where V ∗θ satisfies p−θ,1(V ∗θ ) = pθ,2(V ∗θ ), whenever an

intersection between pθ,2(·) and the negative root p−θ,1(·) exists.

Figure 9: Infinite horizon economy with symmetric information
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Facts i)-iii) imply that an intersection between equations (37) and (40) always exist. This is because
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equation pθ,2(·) in (40), which begins in the origin and has a strictly negative slope that converges to

a constant, will either intersect the negative root p−θ,1(·) in (39) (case 1), whose strictly negative slope

converges to a constant of larger absolute magnitude than the limit of pθ,2(·), or it will intersect the

positive root p+
θ,1(·) in (38) (case 2), which has strictly positive slope.

Fact iv) provides the uniqueness result. To see this, notice that in case 1, the condition that

|∂p−θ,1(V ∗θ )/∂Vθ| > |∂pθ,2(V ∗θ )/∂Vθ| implies that the two lines can only intersect once. If this was not

true, then at least in one of these intersections condition iv) would be violated. Regarding case 2, when-

ever equation pθ,2(·) intersects the positive root p+
θ,1(·), condition iv) implies it cannot also intersect the

negative root p−θ,1(·), even once. This is because whenever p+
θ,1(·) and pθ,2(·) intersect, the first intersection

with p−θ,1(·) would be from above, implying |∂p−θ,1(V ∗θ )/∂Vθ| < |∂pθ,2(V ∗θ )/∂Vθ|, or a violation of condition

iv). Hence, condition iv) establishes the global uniqueness of the solution. I now prove each of these claims.

To establish fact i), derive equation (38) w.r.t. Vθ, which yields the result immediately. For fact ii),

simply derive the negative root p−θ,1(·) in (39) twice, which gives

∂p−θ,1(·)/∂Vθ = − R
2

2γr
[1 +

2(σ−2 + Vθ)− k2

2((σ−2 + Vθ)2 − k2(σ−2
θ + Vθ))1/2

] < 0,

∂2p−θ,1(·)/∂V 2
θ =

R2

2γr
[

k2σ−2
θ ρθ/R+ k4/4

((σ−2 + Vθ)2 − k2(σ−2
θ + Vθ))3/2

] > 0, and

lim
Vθ→∞

∂p−θ,1(·)/∂Vθ =
−R2

γr
.

Similarly, for fact iii) we derive equation pθ,2(·) in (40) twice to find

∂pθ,2(·)/∂Vθ = − R
γr

[1 +
σ−2σ−2

θ ρθ(1− ρθ)/R
(σ−2 + Vθ)2

] < 0,

∂2pθ,2(·)/∂V 2
θ =

R

γr
[
2σ−2σ−2

θ ρθ(1− ρθ)/R
(σ−2 + Vθ)3

] > 0, and

lim
Vθ→∞

∂pθ,2(·)/∂Vθ =
−R
γr

.

Finally, to establish fact iv), let’s define the following objects:

a(Vθ) ≡
σ−2
θ ρθ(1− ρθ)/R
(σ−2 + Vθ)2

, b(Vθ) ≡
Vθ

σ−2 + Vθ
, c(Vθ) ≡ 1− k2 σ−2

θ + Vθ
(σ−2 + Vθ)2

, and d(Vθ) ≡
R(1− b(Vθ))
R− ρθb(Vθ)

.

Intersection of equations p−θ,1(·) and pθ,2(·) at Vθ = V ∗θ implies we can write

− R
2

2γr
(σ−2 + V ∗θ )(1 + c(V ∗θ )1/2) = − R

γr
V ∗θ (1 + a(V ∗θ )), or (41)

c(V ∗θ ) =
4

R
b(V ∗θ )(1 + a(V ∗θ ))(

b(V ∗θ )(1 + a(V ∗θ ))

R
− 1) + 1. (42)
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We now compare the slopes between equations p−θ,1(·) and pθ,2(·) at Vθ = V ∗θ . Manipulation of ∂p−θ,1(V ∗θ )/∂Vθ

using the equality condition in (42) allows to write (omitting the dependence on Vθ)

∂p−θ,1(·)/∂Vθ|Vθ=V ∗θ
= − 1

γr

[b2(1 + a)2 + b(1 + a)R−b(1+a)
R ρθ]

2
Rb(1 + a)− 1

, (43)

while the slope of equation pθ,2(·) takes the form

∂pθ,2(·)/∂Vθ|Vθ=V ∗θ
= − R

γr
(1 + a(1− b)). (44)

Proving condition iv) then amounts to establishing

[b2(1 + a)2 + b(1 + a)R−b(1+a)
R ρθh]

2
Rb(1 + a)− 1

> 1 + a(1− b). (45)

but notice that a(·) can be expressed as ρθ(1− b(·)) 1−ρθ
R−ρθ . Using this last transformation in (43) and (44)

gives after some (tedious) manipulation, the result in (45). This completes the proof.

Proof of Proposition 2:

Since the problem of investors in the no-information economy can always be represented as an equivalent

full-information economy with scaled up noise, I will prove the proposition for the full-information economy

only. Let P ∗ ≡ [p∗0 p∗F p∗θ] be an equilibrium price vector, and P
′ ≡ [p∗0 p∗F p

′
θ] represent a perturbation

from the equilibrium. When T = 2, the value function matrix V is the zero matrix, and α = 1. Let

m ≡ 2 γ
R−ρθ (σ2

D + ( R
R−ρF )2σ2

F )1/2. The solution for the price coefficient associated with the supply shock,

pθ, is then given by the following roots

p∗,+θ = −
σ−2
θ (R− ρθ)

2γ
(1−

√
1−m2σ2

θ), (46)

p∗,−θ = −
σ−2
θ (R− ρθ)

2γ
(1 +

√
1−m2σ2

θ). (47)

Let’s now analyze the effects of perturbing the equilibrium by setting p
′
θ 6= p∗θ. From the agents optimiza-

tion and market clearing condition, we get a new implied price coefficient p
′′
θ given by

p
′′
θ = −

γ(σ2
D + ( R

R−ρF )2σ2
F )

R− ρθ
−

(p
′
θ)

2

R− ρθ
,

from which we can subtract the initial perturbation p
′
θ to write

p
′′
θ − p

′
θ = −(p

′
θ − p∗θ)(1 +

γσ2
θ(p

′
θ + p∗θ)

R− ρθ
).
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If we now evaluate this expression at p
′
θ → p∗θ along the low volatility equilibrium in the positive root

(equation (46)), we find

p
′′
θ − p

′
θ|p′θ→p∗,+θ = −(p

′
θ − p∗θ)

√
1−m2σ2

θ ,

and so |p′′θ − p∗θ| < |p
′
θ − p∗θ| and the equilibrium is stable. Along the high-volatility equilibrium in the

negative root (equation (47)), we get

p
′′
θ − p

′
θ|p′θ→p∗,−θ = (p

′
θ − p∗θ)

√
1−m2σ2

θ ,

and so |p′′θ − p∗θ| > |p
′
θ − p∗θ| and the equilibrium is unstable. This completes the proof.

Numerical solution method:

I now describe the numerical methodology used to find the equilibrium coefficients in the price function

of equation (6). The problem consists in finding the (possibly multiple) price coefficients that satisfy

the fixed point representation in expression (34). As initial price coefficients, I use a matrix whose rows

correspond to different starting values for the price vector, where the only element changing across rows

is the coefficient associated with the random supply, pθ. Due to its convergence properties, the low

volatility equilibrium is straightforward to find as initial guesses using relatively low values of pθ (in

absolute magnitude) quickly converge to the the same fixed point price vector.

The complications arise when trying to find the price coefficients in the unstable price vector. To

find it I postulate successively decreasing (more negative) supply coefficients as an initial guesses. If the

iteration brings the price coefficient to the low-volatility equilibrium, this means that the conjectured

supply coefficient is still not negative enough. Beyond some threshold, the postulated value of pθ is

too negative and the iteration diverges. This implies that the second equilibrium value of pθ must lie

in between the last initial guess that produced a convergence, and the first guess that produced the

divergence. I then zoom into this region, creating a new matrix of price vectors that span this narrower

range of price coefficients.

I then repeat the process, every time defining a new range of price coefficients between the last

converging and first diverging row vector of the initial matrix. After a few iterations, the range of

values where the second equilibrium pθ lies can be made arbitrarily narrow, providing an arbitrarily close

approximation to the true equilibrium value.
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